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a b s t r a c t

If you are given a simple three-dimensional autonomous quadratic system that has only
one stable equilibrium, what would you predict its dynamics to be, stable or periodic? Will
it be surprising if you are shown that such a system is actually chaotic? Although chaos
theory for three-dimensional autonomous systems has been intensively and extensively
studied since the time of Lorenz in the 1960s, and the theory has become quite mature
today, it seems that no one would anticipate a possibility of finding a three-dimensional
autonomous quadratic chaotic system with only one stable equilibrium. The discovery of
the new system, to be reported in this Letter, is indeed striking because for a three-dimen-
sional autonomous quadratic system with a single stable node-focus equilibrium, one typ-
ically would anticipate non-chaotic and even asymptotically converging behaviors.
Although the equilibrium is changed from an unstable saddle-focus to a stable node-focus,
therefore the familiar Ši’lnikov homoclinic criterion is not applicable, it is demonstrated to
be chaotic in the sense of having a positive largest Lyapunov exponent, a fractional dimen-
sion, a continuous broad frequency spectrum, and a period-doubling route to chaos.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

For three-dimensional (3D) autonomous hyperbolic type of chaotic systems, a commonly accepted criterion for proving
the existence of chaos is due to Ši’lnikov [1–4], which has a slight extension recently [5]. Chaos in the Ši’lnikov type of 3D
autonomous quadratic dynamical systems may be classified into four subclasses [6]:

� chaos of the Ši’lnikov homoclinic-orbit type;
� chaos of the Ši’lnikov heteroclinic-orbit type;
� chaos of the hybrid type with both Ši’lnikov homoclinic and heteroclinic orbits;
� chaos of other types.

In this classification, a system is required to have a saddle-focus type of equilibrium, which belongs to the hyperbolic type
at large.

Notice that although most chaotic systems are of hyperbolic type, there are still many others that are not so. For non-
hyperbolic type of chaos, saddle-focus equilibrium typically does not exist in the systems, as can be seen from Table 1 which
includes several non-hyperbolic chaotic systems found by Sprott [7–10]. More recently, Yang and Chen also found a chaotic
system with one saddle and two stable node-foci [11] and, moreover, an unusual 3D autonomous quadratic Lorenz-like
chaotic system with only two stable node-foci [12]. In fact, similar examples can be easily found from the literature.
. All rights reserved.
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Table 1
Equilibria and eigenvalues of several typical Sprott systems.

Systems Equations Equilibria Eigenvalues

Sprott
Case D

_x ¼ �y (0,0,0) 0, ±i
_y ¼ xþ z
_z ¼ xzþ 3y2

Sprott
Case E

_x ¼ yz (0.25,0.0625,0) �1, ±0.5i
_y ¼ x2 � y
_z ¼ 1� 4x

Sprott
Case I

_x ¼ �0:2y (0,0,0) �1.13449, 0.06725 ± 0.58996i
_y ¼ xþ z
_z ¼ xþ y2 � z

Sprott
Case J

_x ¼ 2z (0,0,0) �2.31460, 0.15730 ± 1.30515i
_y ¼ �2yþ z
_z ¼ �xþ yþ y2

Sprott
Case L

_x ¼ yþ 3:9z (1,0.9,�0.23077) �1.43329, 0.21664 ± 1.63526i
_y ¼ 0:9x2 � y
_z ¼ 1� x

Sprott
Case N

_x ¼ �2y (�0.25,0,0.5) �2.31460, 0.15730 ± 1.30515i
_y ¼ xþ z2

_z ¼ 1þ y� 2z

Sprott
Case R

_x ¼ 0:9� y (�0.44444,0.9,�0.4) �1.23212, 0.11606 ± 0.84674i
_y ¼ 0:4þ z
_z ¼ xy� z
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In this paper, we report a very surprising finding of a simple 3D autonomous chaotic system that has only one equilibrium
and, furthermore, this equilibrium is a stable node-focus. For such a system, one almost surely would expect asymptotically
convergent behaviors or, at best, would not anticipate chaos per se.

From Table 1, one may observe that the Sprott D and E systems also have only one equilibrium, but nevertheless this equi-
librium is not stable. From this point of view, it is easy to understand and indeed easy to prove that the new system will not
be topologically equivalent to the Sprott systems.

2. The new system

2.1. The mechanism of generating the new system

The mechanism of generating the new system is simple and intuitive.
To start with, let us first review some of the Sprott chaotic systems listed in Table 1, namely those with only one equi-

librium. One can easily see that systems I, J, L, N and R all have only one saddle-focus equilibrium, while systems D and E
both degenerate in the sense that their Jacobian eigenvalues at the equilibria consist of one conjugate pair of pure imaginary
numbers and one real number. Clearly, the corresponding equilibria are not stable.

It is also easy to imagine that a tiny perturbation to the system may be able to change such a degenerate equilibrium to a
stable one. Therefore, we added a simple constant control parameter to an aforementioned Sprott chaotic system, trying to
change the stability of its single equilibrium to a stable one while preserving its chaotic dynamics.

As a result, we obtained the following new system:
_x ¼ yzþ a;
_y ¼ x2 � y;
_z ¼ 1� 4x:

8><
>: ð1Þ
When a = 0, it is the Sprott E system; when a – 0, however, the stability of the single equilibrium is fundamentally dif-
ferent, as can be verified and compared between the results shown in Tables 1 and 2, respectively.

To better understand the new system (1), and more importantly to demonstrate that this new system is indeed chaotic,
some basic properties of the system are briefly analyzed next.

2.2. Equilibrium and stability

The system (1) possesses only one equilibrium:
PðxE; yE; zEÞ ¼
1
4
;

1
16

;�16a
� �

: ð2Þ



Table 2
Equilibria and eigenvalues of the new system.

Systems Equations Equilibria Eigenvalues

New System
a = �0.005

_x ¼ yzþ a (0.25,0.0625,0.08) �1.03140, 0.01570 ± 0.49208i
_y ¼ x2 � y
_z ¼ 1� 4x

New System
a = 0.006

_x ¼ yzþ a (0.25,0.0625,�0.096) �0.96069, �0.01966 ± 0.50975i
_y ¼ x2 � y
_z ¼ 1� 4x

New System
a = 0.022

_x ¼ yzþ a (0.25,0.0625,�0.352) �0.84580, �0.07710 ± 0.53818i
_y ¼ x2 � y
_z ¼ 1� 4x

New System
a = 0.030

_x ¼ yzþ a (0.25,0.0625,�0.48) �0.78217, �0.10891 ± 0.55476i
_y ¼ x2 � y
_z ¼ 1� 4x

New System
a = 0.050

_x ¼ yzþ a (0.25,0.0625,�0.8) �0.60746, �0.19627 ± 0.61076i
_y ¼ x2 � y
_z ¼ 1� 4x
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Linearizing the system at the equilibrium P gives the Jacobian matrix
J ¼
0 z y

2x �1 0
�4 0 0

2
64

3
75 ¼

0 �16a 1
16

1
2 �1 0
�4 0 0

2
64

3
75: ð3Þ
By solving the characteristic equation jkI � Jj = 0, one obtains the Jacobian eigenvalues, as shown in Table 2 for some chosen
values of the parameter a.

2.3. Lyapunov exponents

To verify the chaoticity of system (1), its Lyapunov exponents and Lyapunov dimension are calculated.
The Lyapunov exponents are denoted by Li, i = 1,2,3, and ordered as L1 > L2 > L3. A system is considered chaotic if L1 > 0,

L2 = 0, L3 < 0 with jL1j < jL3j.
The Lyapunov dimension is defined by
DL ¼ jþ 1
jLjþ1j

Xj

i¼1

Li;
where j is the largest integer satisfying
Pj

i¼1Li P 0 and
Pjþ1

i¼1Li < 0.
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Fig. 1. The largest Lyapunov exponent versus the parameter a.
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Fig. 1 shows the dependence of the largest Lyapunov exponent of system (1) on the parameter a. From Fig. 1, it is clear
that the largest Lyapunov exponent decreases as the parameter a increases from �0.01 to 0.05.
2.4. The degenerate case of a = 0 (Sprott E system)

When a = �0.005, the system equilibrium is of the regular saddle-focus type; this case of the chaotic system has been
studied before therefore will not be discussed here.
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Fig. 2. The new system: chaotic attractor with a = 0, including 3D views on the x–y plane, x–z plane and y–z plane.
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Fig. 3. Top: an apparently chaotic waveform of y(t) (a = 0). Bottom: an apparently continuous broadband frequency spectrum jy(t)j.
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When a = 0, the equilibrium degenerates. It is precisely the Sprott E system listed in Table 1 (see Fig. 2). The Ši’lnikov
homoclinic criterion might be applied to this system to show the existence of chaos, however, but it involves somewhat sub-
tle mathematical arguments.

In this degenerate case, the positive largest Lyapunov exponent of the system (see Table 2) still indicates the existence of
chaos. In the time domain, Fig. 3 (top part) shows an apparently chaotic waveform of y(t); while in the frequency domain,
Fig. 3 (bottom part) shows an apparently continuous broadband spectrum jy(t)j. These all prove that the Sprott E system, or
the new system (1) with a = 0, is indeed chaotic.
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Fig. 4. The new system: chaotic attractor with a = 0.006, including 3D views on the x–y plane, x–z plane and y–z plane.
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2.5. The case of a = 0.006: a new type of chaos

When a > 0, the stability of the equilibrium is fundamentally different from that of the Sprott E system. In this case, the
equilibrium becomes a node-focus (see Table 2). The Ši’lnikov homoclinic criterion is therefore inapplicable to this case.

Take a = 0.006 as an example. Numerical calculation of the Lyapunov exponents gives L1 = 0.0489, L2 = 0 and L3 = �1.0485,
indicating the existence of chaos (see Fig. 4).

In the time domain, Fig. 5 (top part) shows an apparently chaotic waveform y(t); while in the frequency domain, Fig. 5
(bottom part) shows an apparently continuous broadband spectrum jy(t)j. These all prove that the new system (1) with
a = 0.006 is indeed chaotic.

2.6. Bifurcations analysis

Fig. 6 shows a bifurcation diagram versus the parameter a, demonstrating a period-doubling route to chaos.
Fig. 7 also demonstrates the gradual evolving dynamical process as a is continuously varied.
Both figures indicate that although the equilibrium is changed from an unstable saddle-focus to a stable node-focus, the

chaotic dynamics survive in a relative narrow range of the parameter a.
All the above numerical results are summarized in Table 3.

3. Discussions

3.1. The co-existence of stable equilibrium and chaotic motion

The new finding in this paper shows that the relation between the local stability of an equilibrium and the global complex
dynamical behaviors of a system is subtle. Mathematically, the Hartman–Grobman theorem is about the local behavior of a
dynamical system in the neighborhood of a hyperbolic equilibrium point. The new system discussed in this paper shows that
although such a system has only one hyperbolic equilibrium point but they turn out to be chaotic globally.

3.2. Attracting basin of the equilibrium

When a < 0, the equilibrium is unstable. For the limiting case a = 0, the equilibrium is non-hyperbolic and numerical sim-
ulation shows that no other orbits are attracted toward this equilibrium. When a > 0, as the parameter a increases the
attracting basin of the stable equilibrium expands gradually, as shown in Fig. 8.
Fig. 6. Bifurcation diagram, showing a period-doubling route to chaos in y (at x = 0.25) versus the parameter a.
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Fig. 7. Phase portraits and frequency spectrums: (a) a = 0.006, (b) a = 0.022, (c) a = 0.03, (d) a = 0.05.
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Table 3
Numerical results for some values of the parameter a with initial values (1, 1,1).

Parameters Eigenvalues Lyapunov exponents Fractal dimensions

a = �0.005 k1 = �1.03140 L1 = 0.0884 DL = 2.081
k2,3 = 0.01570 ± 0.49208i L2 = 0

L3 = �1.0884

a = 0 k1 = �1 L1 = 0.0766 DL = 2.071
k2,3 = ±0.5i L2 = 0

L3 = �1.0766

a = 0.006 k1 = �0.96069 L1 = 0.0510 DL = 2.048
k2,3 = �0.01966 ± 0.50975i L2 = 0

L3 = �1.0510

a = 0.022 k1 = �0.84580 L1 = 0 DL = 1.000
k2,3 = �0.07710 ± 0.53818i L2 = �0.1381

L3 = �0.8619

a = 0.030 k1 = �0.78217 L1 = 0 DL = 1.000
k2,3 = �0.10891 ± 0.55476i L2 = �0.0826

L3 = �0.9174

a = 0.050 k1 = �0.60746 L1 = 0 DL = 1.001
k2,3 = �0.19627 ± 0.61076i L2 = �0.0518

L3 = �0.9482

Fig. 8. Attracting basin of the equilibrium on the plane y ¼ 1
16

� �
: (a) a = 0.001, (b) a = 0.006, (c) a = 0.01, (d) a = 0.03.
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4. Conclusion

This paper has reported the finding of a simple three-dimensional autonomous chaotic system which, very surprisingly,
has only one stable node-focus equilibrium. The discovery of this new system is striking, because with a single stable equi-
librium in a 3D autonomous quadratic system, one typically would anticipate non-chaotic and even asymptotically converg-
ing behaviors. Yet, unexpectedly, this system is chaotic. Although the equilibrium is changed from an unstable saddle-focus
to a stable node-focus, therefore the Ši’lnikov homoclinic criterion is not applicable, it has been verified to be chaotic in the
sense of having a positive largest Lyapunov exponent, a fractional dimension, a continuous frequency spectrum, and a per-
iod-doubling route to chaos.

Although the fundamental chaos theory for autonomous dynamical systems seems to have reached its maturity today,
our finding reveals some new mysterious features of chaos.
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