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Abstract In the chaotic Lorenz system, Chen sys-
tem and Rössler system, their equilibria are unstable
and the number of the equilibria are no more than
three. This paper shows how to construct some simple
chaotic systems that can have any preassigned num-
ber of equilibria. First, a chaotic system with no equi-
librium is presented and discussed. Then a methodol-
ogy is presented by adding symmetry to a new chaotic
system with only one stable equilibrium, to show that
chaotic systems with any preassigned number of equi-
libria can be generated. By adjusting the only param-
eter in these systems, one can further control the sta-
bility of their equilibria. This result reveals an intrin-
sic relationship of the global dynamical behaviors with
the number and stability of the equilibria of a chaotic
system.

Keywords Chaotic system · Equilibrium · Chaotic
attractor · Stable chaos

1 Introduction

In chaos theory, it is important to study the stabil-
ity of the equilibria of an autonomous dynamical sys-
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tem. For a dynamical system described by a set of
autonomous ordinary differential equations (ODEs),
ẋ = f (x), x ∈ Rn, if f (xe) = 0 has real solution then
xe is called the equilibrium of this dynamical system.
An equilibrium is said to be hyperbolic if all eigenval-
ues of the system Jacobian matrix have nonzero real
parts. A hyperbolic equilibrium for three-dimensional
(3D) autonomous system can be a node, saddle, node-
focus, or saddle-focus. For 3D autonomous hyperbolic
type of dynamical systems, a commonly accepted cri-
terion for proving the existence of chaos is due to
Šil’nikov [1–5].

It has also been noticed that although most chaotic
systems are of hyperbolic type, there are still many
others that are not so. For nonhyperbolic type of
chaotic systems, they usually do not have saddle-focus
equilibria, such as those found by Sprott [6–9].

The well-known Lorenz system [10] and also
Chen system [11, 12] and some other Lorenz-like sys-
tems [13–16] all have two unstable saddle-foci and
one unstable node. They can generate a two-wing
butterfly-shaped chaotic attractor. Near the center of
the two wings, there lies one an unstable saddle-focus.
In recent years, some chaotic systems are found which
can generate three-wing, four-wing, and even multi-
wing attractors. Observe that, typically, for those sym-
metrical four-wing attractors, near the center of their
wings there also lies one unstable saddle-focus. This
common feature may imply that the number of equi-
libria basically determines the shape of a multiwing
attractor. Therefore, it is interesting to ask: Is it pos-
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Fig. 1 The chaotic attractor
of system (1), which has
two symmetrical unstable
equilibria (indicated by the
red dots) when a = 0.01:
3D views on the x–y plane,
x–z plane, and y–z plane
(Color figure online)

sible to generate a chaotic system with an arbitrarily
preassigned number of equilibria? Is the number of
equilibria always determinate the shape of an attrac-
tor?

Furthermore, regarding the stability of the equi-
libria, recall that recently Yang and Chen found a
chaotic system with one saddle and two stable node-
foci [17], and an unusual 3D autonomous quadratic
Lorenz-like chaotic system with only two stable
node-foci [18]. Moreover, Wang and Chen found
an interesting chaotic system with only one stable
node-focus [19]. Thus, another interesting question is
whether it is possible for a chaotic system to have two,
or three, or even an arbitrarily large number of sta-
ble/unstable equilibria?

This paper attempts to answer these questions by
showing a novel example of a chaotic system with
no equilibrium, and several other examples of chaotic
systems which have any preassigned number of equi-
libria. Meanwhile, it is shown that, by adjusting the
only parameter in these systems, one can also control
the stability of these equilibria.

2 Chaotic system with no equilibrium

First, a 3D chaotic autonomous system is introduced:

⎧
⎪⎨

⎪⎩

ẋ = y,

ẏ = z,

ż = −y + 3y2 − x2 − xz + a,

(1)

When a > 0, this system has two symmetrical equi-
libria: (

√
a,0,0) and (−√

a,0,0), as shown by Fig. 1.
When a = 0, these two symmetrical equilibria merge
into one, the origin (0,0,0). When a < 0, there is no
equilibrium in this system, but still the system can gen-
erate a chaotic attractor, as shown in Fig. 2. The largest
Lyapunov exponent with respect to the parameter a is
shown in Fig. 3, which convincingly implies that the
system is chaotic.

3 A modified Sprott E system with one stable
equilibrium

Now, a chaotic system with only one equilibrium, a
stable node-focus, is introduced, which was reported
in [19].

This system was found by modifying the Sprott E
system, as follows:
⎧
⎪⎨

⎪⎩

ẋ = yz + a,

ẏ = x2 − y,

ż = 1 − 4x.

(2)
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Fig. 2 The chaotic
attractor of system (1),
which has no equilibrium
when a = −0.05; 3D views
on the x–y plane, x–z

plane, and y–z plane (Color
figure online)

Fig. 3 The largest Lyapunov exponent of system (1) with re-
spect to the parameter a (Color figure online)

When a = 0, it is the Sprott E system [8]; when
a �= 0, however, the stability of the single equilibrium
is fundamentally different.

Specifically, when a > 0, system (2) possesses only
one stable equilibrium:

P(xE,yE, zE) =
(

1

4
,

1

16
,−16a

)

. (3)

Some numerical calculation results are shown in
Table 1.

Table 1 Jacobian eigenvalues of system (2)

a Jacobian eigenvalues

0 −1, ±0.5i

0.006 −0.9607, −0.0197 ± 0.5098i

0.022 −0.8458,−0.0771 ± 0.5382i

Interestingly, this system (2) can generate a one-
scroll chaotic attractor, as shown in Fig. 4.

In the following, this system (2) is further modified
by imposing some kind of symmetry onto it, to have
different numbers of equilibria while keeping this sys-
tem chaotic.

4 Chaotic system with two equilibria

Rewrite system (2) in terms of u,v,w as follows:
⎧
⎪⎨

⎪⎩

u̇ = vw + a,

v̇ = u2 − v,

ẇ = 1 − 4u.

(4)

From Fig. 4, one can see that the y-axis does not
intersect with the attractor in system (2). So, one may
try to add a y-axis rotation symmetry to this system,
as detailed below.
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Fig. 4 The chaotic
attractor of system (2),
when a = 0.006 it has one
stable equilibrium indicated
by the green dot; 3D views
on the x–y plane, x–z

plane, and y–z plane (Color
figure online)

Consider the following simple coordinate transfor-
mation:
⎧
⎪⎨

⎪⎩

u = x2 − z2,

v = y,

w = 2xz.

(5)

This transformation can add a y-axis rotation symme-
try, Ry(π), to the original system, because for each
(u, v,w) there are two points (±x,±y,±z) corre-
sponding to (u, v,w).

After the above transformation, the system be-
comes
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = 1
2

z+2yx2z+xa−4x2z+4z3

x2+z2 ,

ẏ = (x2 − z2)2 − y,

ż = − 1
2

2yxz2+za−4xz2−x+4x3

x2+z2 .

(6)

The new system (6) possesses two symmetrical
equilibria, which are independent of the parameter a:
P 1( 1

2 , 1
16 ,0) and P 1(− 1

2 , 1
16 ,0).

System (6) is not globally but only locally topolog-
ically equivalent to the original system (2), however.
Yet one can control the stability of these equilibria by
adjusting the parameter a, so that the stability remains
the same as the original system (2), which when a < 0
are unstable and when a > 0 are stable.

By linearizing system (2) at P 1( 1
2 , 1

16 ,0), one ob-
tains the Jacobian

J |O =
⎡

⎣
−2a 0 1

16
1
2 −1 0

−4 0 −2a

⎤

⎦ , (7)

whose characteristic equation is

det(λI − J |O)

= λ3 + (1 + 4a)λ2 +
(

4a2 + 4a + 1

4

)

λ + 4a2 + 1

4

= 0,

which yields

λ1 = −1 < 0,

λ2 = −2a + 0.5i,

λ3 = −2a − 0.5i.

System (6) can generate a symmetrical two-petal
chaotic attractor, as shown in Figs. 5 and 6, respec-
tively.

Numerical calculation of the largest Lyapunov ex-
ponent of the system indicates the existence of chaos
for some particular values of parameter a, as shown in
Fig. 7.
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Fig. 5 The new two-petal
chaotic attractor with stable
equilibria (indicated by the
green dots) when a = 0.003
(Color figure online)

Fig. 6 The new two-petal
chaotic attractor with
unstable equilibria
(indicated by the red dots)
when a = −0.01 (Color
figure online)

5 Chaotic system with three equilibria

Similarly, consider the following transformation:
⎧
⎪⎨

⎪⎩

u = x3 − 3xz2,

v = y,

w = 3x2z − z3.

(8)

It can add a y-axis rotation symmetry, Ry(
2
3π),

to the original system, because for each (u, v,w)

there are three symmetrical points corresponding to

it.

After the above transformation, the system be-

comes
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Fig. 7 The largest Lyapunov exponent of system (6) with re-
spect to parameter a (Color figure online)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = 1
3

3x4zy−4x2z3y+x2a−8x4z+2zx+24x2z3+z5y−z2a

2x2z2+x4+z4 ,

ẏ = (x3 − 3xz2)2 − y,

ż = − 1
3

6 z2x3y−2 z4xy+2 zxa+4x5−x2−16 z2x3+z2+12 z4x

2x2z2+x4+z4 .

(9)

This system possesses three symmetrical equilib-
ria, which are dependent on the parameter a. The
analytical expression are too long to write out here,
so only some numerical results are shown in Ta-
ble 2.

The system has a symmetrical three-petal chaotic
attractor, as shown in Figs. 8 and 9, respectively.

Numerical calculation of the largest Lyapunov ex-
ponent indicates the existence of chaos for some par-
ticular values of parameter a, as shown in Fig. 10.

Table 2 Equilibria and
Jacobian eigenvalues of
system (9)

a Equilibria Jacobian eigenvalues

Unstable case −0.01 P1 = (0.6550,0.0625,0.1258)

P2 = (−0.2186,0.0625,−0.6300)

P3 = (−0.4365,0.0625,0.5044)

−1.0617,0.0308 ± 0.4843i

Stable case 0.01 P1 = (0.6550,0.0625,−0.1258)

P2 = (−0.2186,0.0625,0.6300)

P3 = (−0.4365,0.0625,−0.5044)

−0.9334,−0.0333 ± 0.5165i

Fig. 8 Chaotic attractor of
system (9) with three stable
symmetrical equilibria
(indicated by the green
dots) when a = 0.01 (Color
figure online)
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Fig. 9 Chaotic attractor of
system (9) with three
unstable symmetrical
equilibria (indicated by the
red dots) when a = −0.01
(Color figure online)

Fig. 10 The largest Lyapunov exponent of system (9) with re-
spect to the parameter a (Color figure online)

6 Chaotic system with any number of equilibria

Theoretically, one can use the transform (x + iz)n =
(u + iw) to obtain a new chaotic system with n equi-
libria. We should claim that this approach may only
provide an theoretically framework, since the attractor
seems destine to flatten out when the number n is very
large. But there still may exist a very narrow range of
parameter a for the attractor to survive. The following
is such an example with five equilibria.

Fig. 11 Chaotic attractor of the new system with five symmet-
rical equilibria when a = 0 (Color figure online)

Consider the following transformation:

⎧
⎪⎨

⎪⎩

u = x5 − 10x3z2 + 5xz4,

v = y,

w = 5x4z − 10x2z3 + z5.

(10)

It can add a y-axis rotation symmetry, Ry(
2
5π), to the

original system. The new equations are too long to

write out, so are omitted here. The symmetrical at-

tractor generated with parameter a = 0 is shown in

Fig. 11.
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7 Discussions

The Hartman–Grobman theorem is an important the-
orem in ODE systems theory. It is about the local
behavior of an autonomous dynamical system in the
neighborhood of a hyperbolic equilibrium, stating that
the behavior of the dynamical system near the hy-
perbolic equilibrium is qualitatively the same as (i.e.,
topologically equivalent to) the behavior of its lin-
earization near this equilibrium point.

Notice, however, that the new systems discussed in
this paper have chaos, which is a global behavior, al-
though such a system has only one hyperbolic equi-
librium point. In other words, all system flows locally
converge to the stable equilibrium, but they are chaotic
globally. This interesting phenomenon is worth further
studying, both theoretically and experimentally, to fur-
ther reveal the intrinsic relationship between the local
stability of an equilibrium and the global complex dy-
namical behaviors of a chaotic system.
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